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INTRODUCTION 

It is well known that the heat conduction in a material 
with thermal memory is described by the general hyperbolic 
heat equation of  the type (see e.g. [1] and the references 
therein) 

~3 2 T itT . 
z ~ t  2 + -fir - - a A r  = q( t ,x ,y , z ,  l )  (1) 

where z is the thermal relaxation time, a is the thermal diffu- 
sivity, A is Laplace operator and q( t ,x ,y , z ,  T) is a source 
term. This equation forms the basis for the experimental 
determination o f  the coefficient of  the thermal diffusivity 0¢ 
and the relaxation time • o f  the material with the memory 
by means of  the so-called flash method [2]. For  this purpose 
the slab of  the investigated material of  the thickness L (L 
small) is considered which is described by one-dimensional 
version of  equation (1) 

c~2T COT c~2T 
" r - -  + "~  --Ot~":- = q(t,x,  T) (2) 
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initially at the equilibrium temperature T(x, 0) = 0. At the 
time t = 0 the external surface at the point x = 0 is suddenly 
exposed to a certain time-dependent heat pulse with a pre- 
scribed time function. The heat pulse travels through the slab 
and is determined by the solution of  the differential equation 
(1) under the given boundary conditions [3]. The exper- 
imental value of  the thermal diffusivity a and the relaxation 
time • are then deduced from the spatial and temporal 
response field of  the travelling pulse in the investigated 
material [4]. When del:ermining the thermal parameters of  a 
thermal medium we 1to not know a priori whether it is a 
standard material described by the parabolic heat equation 

~gT O2T 
¢ t - -  = q(x, t, T) (3) 
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where T is a temperature at the space-time point (x, t) or a 
material with thermal memory described by the hyperbolic 
heat-conduction equation (1). 

There exist a great number of  papers which deal with the 
solution of  equation (1), especially those which take into 
account different boundary conditions occurring in an exper- 
imental arrangement. They develop mathematical methods 
how to distinguish two types of  materials from the pro- 
pagating response ancl then determine their thermal par- 
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ameters (see e.g. [5] and [6]). The overwhelming majority of  
the authors consider generally the source term in equation 
(1) as a function of  time only (i.e. describing a kind of  a heat 
pulse). 

The aim of  this paper is to show theoretically that in media 
with memory described by equation (2) with a special choice 
of  the source function q(T) there can be generated thermal 
solitary waves or solitons under certain boundary conditions. 
In the theory of  wave propagation it is well-known that 
besides the travelling waves there can exist in certain media 
and at certain physical conditions also so-called solitary 
waves or solitons [7]. They represent stable localized wave 
packets which do not disperse and are special solutions of  
certain nonlinear wave equations. For  example, there exists 
a class of  physical problems which are described by the sine- 
Gordon model [8, 9] 

¢ . -  exx + sin ¢ = 0 (4) 

or by the 4 4 model [8] 

4 , . - ¢ x x - ¢ + C  = 0. (5) 

The non-linear equations (4) and (5) possess travelling 
soliton (4) and solitary wave (5) solutions, dp[(x-vt)/ 
(1-v2)~/2], with arbitrary velocity v, which represent 
'quasiparticles' of  the respective non-linear field theories 
[10]. At certain conditions also additional perturbations 
do not destroy their stability and the travelling nature of  the 
solitons: if on the RHS of equations (4) and (5) appears 
the function F(x ,  t) = f - F e t ,  where f and F are constant 
external driving force ( f  small, f<< 1) and a friction 
coefficient, respectively, then the soliton solution 

[(x-vt) / (1  - v  2) 1/2] can be saved if the friction losses of  the 
energy are compensated by the energy supply due to the 
external driving field f ,  [11, 12] 

F dx et 2 + f  dx et = 0. (6) 
-co 

When using the respective soliton solution for q~ in equation 
(6) we get an equation for the velocity v of  the soliton; 
evidently it is no more arbitrary, but it becomes a function 
of  both perturbation parameters, v = v(f/F) [12, 13]. 

However, for the case with damping and driving forces 
of  the type (6) the usual soliton solution in the 
form dp[(x-vt)/(1 --V2) 1/2] must be generalized as 
dp[(x-xo(t))/(1--~0:(t))'/2]. Namely, the damping and driv- 
ing forces interplay so that during some transient time they 
reach asymptotically an equilibrium with the constant value 
of  the velocity, where Xo(t) = vt [14, 15]. We will not consider 
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f constant driving force 
L thickness of the sample 
q source term 
T temperature 
v travelling velocity of the 

soliton. 

NOMENCLATURE 

Greek symbols 
ct thermal diffusivity 
A Laplace operator 
F friction coefficient 
z thermal relaxation time 
~b amplitude of the soliton. 

these transient effects in what follows so that the results will 
be valid in the asymptotic region. 

Equation (2) in one space dimension can be rewritten into 
the normal form usual in soliton physics 

1 ~2T 02T+Fc~T 1 
v~ at 2 Ox ~ ~ = ~q (7) 

where v02 = ctz- 1 and F = a-  1 
With the variable ~ = (x-vt)/(1-v2/v~) I/2 equation (7) 

becomes 

d2T v 2 2 1/2 dT 1 
~-~ +~(l-v /Vo)- ~ - ~ + ~ q = 0 .  (8) 

If we take 

q = f - t -  T - -  T 3 (9a) 
Ct 

o r  

a m  
_ -f+ sin T (9b) 

~t 

then equation (8) has the following solutions : 

(i) With the choice (9a) the solitary wave is a travelling 
domain wall given by [12, 14] 

T(~) = To + Ti tanhy~ (10) 

where 

To = %/2, T, = +(1--~v~) I/2 y = (I/~/2)T1. (II) 

Here, v3 is a solution to equation 

v 3 - v + f = O ,  vl <v3<v2.  

I f f  is small, then v3 ~ f. The condition for the solution (10) 
to exist is the identity 

3 
= "~--'7- ~3. (12) 

~\ vU -42 
From (12) and for small f the travelling velocity v of the 
solitary wave yields 

~22gV3(1 _9 2x-1/2 3 9 2 -1/2 v = -e~zv3) ~ ~-~af(1 +~azf ) . 

(13) 

Hence, for smal l f  and for 9a~f2 << 1, the velocity v is very 
weakly dependent on the relaxation time ~. It is determined 
only by % and by the parameter f of the source function, 
v ~ (3/x/2)~ f 

(ii) For the periodic source function (9b) the soliton solu- 
tion of equation (8) is of the form (see e.g. [15, 16]), 

T(x,t) =4aarctanexpI(x--vt)/( l  --~o)v2'l/2-]j+q~' 

( 1 4 )  

where 

q~s=arsinf [ /]< 1 a =  +1 

For (nf~/4) 2 << 1, we have 

,~f~ / ) ~ - - .  
4 

[ t: = l+\~o~j] . 

(15) 

(16) 

Let us note that for small f the dependence v = v(f~) is 
similar in both cases (i) and (ii) up to a numerical factor; 
this is evident from the comparison of equations (13) and 
(15) or (16). 

From what has been said so far it follows that under 
certain physical conditions in a medium with memory the 
thermal soliton can be generated and its form and propa- 
gation velocity are functionally linked with the medium ther- 
mal parameters. Experimental verification of this theoretical 
conclusion requests, however, a sophisticated experimental 
arrangement. Especially, the exact form of the non-linear 
source term of equation (6) is difficult to realize exper- 
imentally. On the other hand, the experimental identification 
of thermal solitons would enrich the thermal physics and 
could have certain practical impact also for the deter- 
mination of thermal material parameters. The detailed dis- 
cussion of the possibility for experimental generation of ther- 
mal solitons exceeds the scope of this note, therefore it will 
be a subject of a subsequent paper. The aim of this short 
note was only to point out the theoretical possibility of the 
existence of thermal solitons in media with thermal memory. 
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